Key Points on Implementing SLAM in Low-Cost Mobile Robots
Hardware Selection
Software Setup
Algorithm Implementation
Localization and Navigation
Practical Tips

Demystifying SLAM: Why Mapping and Localization are Crucial for DIY Bots
The Budget Build: Selecting Hardware for Your Low-Cost SLAM Platform
The Brains: Choosing the Right Microcontroller/SBC
Low-Cost Sensor Options: Lidar vs. Visual SLAM
Chassis and Motor Control
|
Component
|
Recommended
|
Price Range
|
Why for SLAM?
|
|
SBC
|
Raspberry Pi 4
|
$35-75
|
Handles ROS and basic open-source SLAM
|
|
Sensor
|
RPLIDAR A1
|
$99
|
Reliable Lidar for mapping and localization
|
|
Chassis
|
Differential drive kit
|
$30-50
|
Simple kinematics for low-cost mobile robot
|
|
Motor Driver
|
L298N
|
$5
|
Easy integration with ROS
|
The Foundation: Setting Up the ROS Environment for SLAM
ROS Installation and Kinematics Setup
-
Add ROS repository:
sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" \ > /etc/apt/sources.list.d/ros-latest.list' sudo apt install curl curl -s https://raw.githubusercontent.com/ros/rosdistro/master/ros.asc \ | sudo apt-key add - sudo apt update -
Install desktop version:
sudo apt install ros-noetic-desktop-full -
Setup environment:
echo "source /opt/ros/noetic/setup.bash" >> ~/.bashrc source ~/.bashrc
<robot name="my_robot">
<link name="base_link"/>
<joint name="lidar_joint" type="fixed">
<parent link="base_link"/>
<child link="lidar_link"/>
<origin xyz="0 0 0.1" rpy="0 0 0"/>
</joint>
<link name="lidar_link"/>
</robot>
Useroslaunch urdf_tutorial display.launch model:='$(find my_package)/urdf/my_robot.urdf'to visualize. This sets up ROS for SLAM implementation.
Sensor Driver Integration
-
Clone RPLIDAR package:
cd ~/catkin_ws/src git clone https://github.com/Slamtec/rplidar_ros.git cd .. catkin_make
-
Set permissions and launch:
sudo chmod 666 /dev/ttyUSB0
roslaunch rplidar_ros rplidar.launch
-
Visualize in RViz:
rosrun rviz rviz
/scan. This confirms data flow for open-source SLAM in your low-cost mobile robot.Core Implementation: Open-Source SLAM Algorithms in Practice
Choosing Your Algorithm: Gmapping vs. Cartographer
-
Pros: Easy setup, low CPU use on Raspberry Pi.
-
Cons: Weaker in dynamic environments.
-
Pros: Superior mapping quality.
-
Cons: Needs more power, like Jetson Nano.
Configuration File Deep Dive
sudo apt install ros-noetic-gmapping
<launch>
<arg name="scan_topic" default="/scan" />
<arg name="base_frame" default="base_link"/>
<arg name="odom_frame" default="odom"/>
<node pkg="gmapping" type="slam_gmapping" name="slam_gmapping" output="screen">
<param name="base_frame" value="$(arg base_frame)"/>
<param name="odom_frame" value="$(arg odom_frame)"/>
<param name="map_update_interval" value="5.0"/>
<param name="maxUrange" value="5.5"/> <!-- Matches RPLIDAR A1 -->
<param name="maxRange" value="6.0"/>
<param name="sigma" value="0.05"/>
<param name="kernelSize" value="1"/>
<param name="lstep" value="0.05"/>
<param name="astep" value="0.05"/>
<param name="iterations" value="5"/>
<param name="lsigma" value="0.075"/>
<param name="ogain" value="3.0"/>
<param name="lskip" value="0"/>
<param name="minimumScore" value="200"/>
<param name="srr" value="0.01"/>
<param name="srt" value="0.02"/>
<param name="str" value="0.01"/>
<param name="stt" value="0.02"/>
<param name="linearUpdate" value="0.5"/>
<param name="angularUpdate" value="0.436"/>
<param name="temporalUpdate" value="-1.0"/>
<param name="resampleThreshold" value="0.5"/>
<param name="particles" value="80"/> <!-- Balanced for low-cost SBC -->
<param name="xmin" value="-50.0"/>
<param name="ymin" value="-50.0"/>
<param name="xmax" value="50.0"/>
<param name="ymax" value="50.0"/>
<param name="delta" value="0.05"/> <!-- Map resolution -->
<param name="llsamplerange" value="0.01"/>
<param name="llsamplestep" value="0.01"/>
<param name="lasamplerange" value="0.005"/>
<param name="lasamplestep" value="0.005"/>
<remap from="scan" to="$(arg scan_topic)"/>
</node>
</launch>
-
maxUrange and maxRange: Limit to RPLIDAR's capabilities (5.5-6m) for accurate readings.
-
particles: 80 provides good accuracy without overwhelming Raspberry Pi CPU.
-
delta: 0.05m resolution balances detail and performance.
-
map_update_interval: 5s reduces load on low-cost hardware.
-
xmin/ymin/xmax/ymax: Set bounds to expected environment size; smaller for memory savings.
| Parameter | Default | Adjustment for Low-Cost | Impact on SLAM |
| delta | 0.05 | 0.1 | Coarser map, faster on Raspberry Pi |
| particles | 30 | 50-80 | Better accuracy without overload |
| maxUrange | 16 | 5.5 | Matches RPLIDAR for precise mapping |
| map_update_interval | 5 | 10 | Reduces processing frequency |
| linearUpdate | 1 | 0.5 | Triggers updates on smaller movements |
roslaunch my_package gmapping.launch.Generating the Map (Mapping)
-
Ensure good odometry: Test with rostopic echo /odom—inaccurate wheel data causes drift. Add encoders if needed.
-
Verify TF: Run rosrun tf tf_monitor to confirm frames (map → odom → base_link → lidar_link).
-
Test Lidar alone: Place objects and check /scan for correct distances.
-
Start ROS core:
roscore
-
Run Lidar:
roslaunch rplidar_ros rplidar.launch
-
Launch Gmapping (using your launch file):Gmapping initializes particles and subscribes to /scan and /tf. Terminal output shows updates like "Scan processed" or particle resampling.
rosrun teleop_twist_keyboard teleop_twist_keyboard.py
-
Start RViz:
roslaunch gmapping slam_gmapping.launch
-
Fixed Frame: map
-
Add Map (/map): Shows building map.
-
Add LaserScan (/scan): Displays raw rays.
-
Add PoseArray (/particlecloud): Visualizes localization uncertainty.
-
Teleoperate:
rosrun teleop_twist_keyboard teleop_twist_keyboard.py
-
Move slowly (0.1-0.3 m/s) to allow accurate integration.
-
Strategy: Start in open area, move in figure-8s or loops for loop closure (reduces errors).
-
Cover edges and revisit spots—Gmapping refines with overlapping scans.
-
In RViz: Map starts blank, then expands. White=free, black=occupied, gray=unknown. Particles converge as confidence grows.
-
Saving the Map
mkdir -p ~/catkin_ws/src/my_package/maps
cd ~/catkin_ws/src/my_package/maps
rosrun map_server map_saver -f my_map
-
Generates my_map.pgm (image) and my_map.yaml (config with resolution ~0.05m, origin).
-
View PGM in an image editor; edit manually if needed (e.g., fill gaps) using tools like GIMP.
-
Load saved map: rosrun map_server map_server my_map.yaml
-
Test: Relaunch RViz—map should appear static.
-
If distorted, re-run with better odometry or switch to Cartographer for advanced loop closure.
-
Map not building: Check remaps (scan topic mismatch). Use rostopic info /scan.
-
Drift/Distortion: Calibrate wheels; add IMU for fusion. Slow down—RPLIDAR short range (6m) limits in large/open areas.
-
High CPU: Lower particles to 50; increase temporalUpdate.
-
No loop closure: Revisit areas; ensure consistent lighting/surfaces.
-
Errors like "Dropped messages": Increase queue sizes in launch.
| Issue | Cause | Fix |
| No map updates | Topic mismatch | Remap scan:=/scan; check rostopic |
| Drift | Poor odometry | Add encoders; drive slower |
| Incomplete map | Insufficient exploration | Use systematic paths; loops for closure |
| CPU overload | High particles | Reduce to 50-60; larger update interval |
Beyond Mapping: Real-Time Localization and Navigation
Implementing AMCL for Localization
sudo apt install ros-noetic-amcl
-
Load map:
rosrun map_server map_server my_map.yaml
-
Run AMCL:
<node pkg="amcl" type="amcl" name="amcl">
<param name="min_particles" value="500"/>
<param name="max_particles" value="3000"/>
<param name="kld_err" value="0.02"/>
</node>
-
In RViz, add PoseArray for particles. Set initial pose with 2D Pose Estimate tool. AMCL refines localization as the robot moves.
Troubleshooting Common SLAM Errors
map_update_interval for dynamic spaces; add IMU for stability in DIY robotics.|
Issue
|
Cause
|
Fix
|
|
Drift
|
Sensor noise
|
Tune AMCL particles; add encoders
|
|
Loop Closure Fail
|
Large areas
|
Use Cartographer; slow movement
|
|
Localization Loss
|
Fast turns
|
Lower speed; improve Lidar mount
|
Next Steps: Path Planning
sudo apt install ros-noetic-navigation






